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Figure 1. Given multi-view images of a scene and the object masks describing the object to be removed, our 3D Gaussian Inpainting with
Depth-Guided Cross-View Consistency produces high-fidelity cross-view inpainting results. Compared with current state-of-the-arts such
as SPIn-NeRF [25], Gaussian Grouping [44], and GScream [38], inpainting results of our method not only preserve visible background
contents but also exhibit satisfactory consistency across camera views.

Abstract

When performing 3D inpainting using novel-view rendering
methods like Neural Radiance Field (NeRF) or 3D Gaus-
sian Splatting (3DGS), how to achieve texture and geometry
consistency across camera views has been a challenge. In
this paper, we propose a framework of 3D Gaussian Inpaint-
ing with Depth-Guided Cross-View Consistency (3DGIC)
for cross-view consistent 3D inpainting. Guided by the
rendered depth information from each training view, our
3DGIC exploits background pixels visible across different
views for updating the inpainting mask, allowing us to refine
the 3DGS for inpainting purposes. Through extensive exper-
iments on benchmark datasets, we confirm that our 3DGIC
outperforms current state-of-the-art 3D inpainting methods
quantitatively and qualitatively.

1. Introduction

Novel view synthesis for 3D scenes plays a vital role in
3D reconstruction and scene understanding. Recent ad-
vancements, such as Neural Radiance Fields (NeRF) [1,
5, 10, 22, 23, 27, 31, 35, 46] and 3D Gaussian Splatting
(3DGS) [6, 15, 30, 44, 47], enable high-fidelity novel views

by modeling volumetric properties. However, practical
VR/AR applications [3, 21] require more than reconstruc-
tion: they need editing capabilities that these methods do
not fully address. Among editing challenges, object removal
and inpainting [18, 38] are particularly difficult, as direct
removal creates visible holes, compromising visual qual-
ity. While 2D inpainting [8, 20, 29, 33, 36, 41–43] across
multiple views is possible, maintaining consistency remains
problematic, leading to artifacts and reduced fidelity. Thus,
achieving seamless, multi-view-consistent inpainting for 3D
scenes is still an open challenge.

As a pioneering work in 3D scene inpainting, SPIn-
NeRF [25] proposes to use a pre-trained segmentation net-
work [12] to generate plausible 2D inpaint masks for multi-
view images with sparse human annotations of the ob-
ject to be removed. However, as noted in subsequent re-
search [18, 38], SPIn-NeRF and similar approaches [40, 45]
rely heavily on 2D inpainting of multiple views separately,
which hinders the cross-view consistency of the 3D inpaint-
ing results. To ensure cross-view consistency, RefNeRF [24]
projects the inpainted image from a specific reference view
onto other views using depth-guided projection, thereby en-
suring more consistent inpainting results across views. De-
spite these advancements, these methods still require human-
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annotated 2D masks or sparse annotations to delineate the
objects to be removed and the regions to be inpainted, mak-
ing the process labor-intensive and limiting the scalability
and practicality of these techniques.

To reduce the need for human annotation for obtaining
inpainting masks, recent methods [44, 45] tend to lever-
age the Segment Anything Model (SAM) [17] models with
NeRF or 3DGS to obtain 2D inpainting masks for multi-view
images directly. Although these methods ease the require-
ment of human annotations for inpainting masks, they still
rely on 2D inpainting results for different views as supervi-
sion, limiting the multi-view consistency of the inpainted
3D representations. To alleviate this limitation, some ap-
proaches [7, 18, 19, 26, 38, 39] attempt to build a cross-
view consistent 3D inpainting method on top of the 2D
inpainting mask obtained from SAM. By either leveraging
2D diffusion models as perceptual guidance for the inpainted
region [7, 18, 39] or ensuring feature consistency of corre-
sponding pixels across different views [38], these methods
are able to produce more consistent 3D inpainting results
without the requirement of human-annotated 2D inpainting
masks. Nevertheless, most of the aforementioned methods
rely on the provided per-scene 2D inpainting masks (either
from human annotation or from SAM) for each view, which
can include areas visible in other views, as mentioned in [44].
As a result, the inpainted content within this area might be
inconsistent across camera views, producing artifacts in the
reconstructed 3D scene.

In this paper, we propose a 3D Gaussian Inpainting with
Depth-Guided Cross-View Consistency (3DGIC) to opti-
mize the 3DGS model while achieving multi-view consistent
and high-fidelity 3D inpainting with depth-guided inpaint-
ing masks to locate the inpainting region. Given a set of
images of a scene with corresponding camera views and the
object masks indicating an unwanted object in the scene (ob-
tained from SAM [17], for example), our 3DGIC conducts
the process of Inferring Depth-Guided Inpainting Masks
to consider depth information from all training views and
refine the inpainting mask by discovering background pix-
els from different views. The refined inpainting masks are
then used to provide a joint update of inpainting results
and the underlying 3DGS model via 3D Inpainting with
Cross-View Consistency. Through experiments on real-world
datasets, we quantitatively and qualitatively demonstrate
that our 3DGIC performs favorably against state-of-the-art
NeRF/3DGS-based inpainting methods by achieving better
fidelity and multi-view consistency.

The key contributions of our approach are as follows:
• We propose a 3D Gaussian Inpainting with Depth-Guided

Cross-View Consistency (3DGIC), achieving multi-view
consistent 3D inpainting results with high fidelity.

• By inferring Depth-Guided Inpainting Masks, the region
to be inpainted is properly obtained by considering depth

information across different views, allowing us to guide
the inpainting process for 3DGS.

• Based on the 2D inpaintings from a chosen reference view,
our Inpainting-guided 3DGS Refinement optimizes new
Gaussians of the object-removed scene by ensuring cross-
view consistent inpainting results.

2. Related Works

2.1. 3D Representations for Novel View Synthesis
Novel view synthesis is a widely studied topic in 3D com-
puter vision. Neural Radiance Field (NeRF) [23], a pioneer
in this field, effectively models scenes using multi-view im-
ages. However, as noted in [9], the original NeRF requires
extensive training time—from hours to days—and relies on
numerous images. To address these issues, many subsequent
works [10, 27, 35, 46] have emerged. Methods like Instant
NGP [27] and DVGO [35] reduce training time to minutes
by balancing speed and memory through hash encoding and
voxel encoding. Recently, the introduction of 3D Gaussian
Splatting (3DGS) [15] brings a fundamental revolution to
this area. Different from NeRF and its variants, which model
a 3D scene as an implicit representation, 3DGS models a 3D
scene as a composition of numerous 3D Gaussians, with each
Gaussian parameterized by its three-dimensional centroid,
standard deviations, orientations, opacity, and color features.
By modeling a 3D scene as such an explicit representation,
one is able to render the 2D images of the modeled scene via
rasterization with an incredible 100 fps, whereas the fastest
NeRF-based approach ([10, 27]) only achieves around 10 fps.
As a result, we chose 3DGS as our backbone representation
over NeRF in this paper due to its fast rendering property,
making our approach more applicable in the real world.

2.2. 3D Scene Inpainting
In the context of 3D scene inpainting, SPIn-NeRF [25]
emerges as one of the earliest approaches addressing the
challenges of multi-view consistency. It uses pre-trained seg-
mentation networks to generate plausible inpainting masks
for multi-view images, requiring sparse user annotations to
indicate the unwanted object. These annotations are propa-
gated across views, and a modified Neural Radiance Field
(NeRF) model is used to inpaint the masked regions. Al-
though effective, this approach is heavily dependent on hu-
man intervention and lacks the ability to automate the mask
generation process, thus limiting its scalability.

To reduce the need for manual annotations, recent
works [44, 45] have introduced the use of the Segment
Anything Model (SAM) [17] in combination with NeRF
or 3DGS. Specifically, OR-NeRF employs Grounded-
SAM [32] to locate a single-view 2D inpainting mask for the
object to be removed. It then projects 3D points of the ob-
ject’s surface into other views, which are used as prompts for
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Figure 2. Overview of 3D Gaussian Inpainting with Depth-Guided Cross-View Consistency. Given a 3D Gaussian Splatting model
G1:N pretrained on multi-view images I1:K at camera poses ξ1:K , our goal is to perform 3D inpainting based on the object masks M1:K

(e.g., provided by SAM). With the rendered depth maps D1:K , the stage of Inferring Depth-Guide Inpainting Mask is able to refine the
inpainting masks to preserve visible backgrounds across camera views. The stage of Inpainting-guided 3DGS Refinement then utilizes such
masks to jointly update the new Gaussians G′

1:N′ for both novel-view rendering and inpainting purposes.

SAM to generate masks for the remaining views. Similarly,
Gaussian Grouping [44] enhances 3DGS by incorporating se-
mantic feature learning, allowing the model to jointly render
RGB images and segmentation maps, where the segmenta-
tion supervision is derived from SAM. While these methods
significantly reduce the burden of manual mask creation,
they inpaint 2D images of different views separately and op-
timize the inpainted NeRF by treating all the 2D inpaintings
equally. As a result, the above approaches still face difficul-
ties in producing consistent multi-view results, as mentioned
in [7, 18, 38]

To alleviate this problem, more advanced approaches [7,
18, 38] focus on improving cross-view consistency. For
instance, MALD-NeRF fine-tunes a scene-specific Low-
Rank Adaptation (LoRA) [14] module for a pre-trained
diffusion model to inpaint images of each scene. By intro-
ducing a LoRA module for each scene, the diffusion model
can inpaint more consistent content across different views.
GScream [38], on the other hand, applies diffusion-based
2D inpainting on a chosen reference view. By predicting
the depth map of the inpainted reference view, GScream
incorporates cross-view feature consistency between any
other view and the reference view, optimizing geometric
alignment across views. These methods represent a signif-
icant step forward in achieving automatic, consistent 3D
inpainting, addressing the practical limitations of earlier ap-
proaches. Nonetheless, the aforementioned methods rely

on per-view 2D inpainting masks for 2D inpainting models
as input, while some areas in those masks are visible from
other views, as noted in [44]. Consequently, the inpainted
content for these visible areas may not align with the origi-
nal scene (as illustrated in the red branch in Figure 1). This
inconsistency might be propagated to the inpainted 3D scene,
hindering the reliability of their results.

3. Method

3.1. Problem Definition and Model Overview
We begin with the notations and settings of our pro-
posed framework. Given a 3D Gaussian Splatting (3DGS)
model [44] G1:N = {G1, G2, ..., GN} (N denotes the
number of Gaussians) pretained for K multi-view images
I1:K = {I1, I2, ..., IK} with their camera poses ξ1:K =
{ξ1, ξ2, ..., ξK}, our goal is to remove the Gaussians cor-
responding to a particular object (e.g., the bear statue) de-
scribed by 2D object masks M1:K = {M1,M2, ...,MK}.
More precisely, we aim to update the above 3DGS so that the
optimized Gaussians G′

1:N ′ (with N ′ remaining Gaussians)
allow novel view rendering without the object of interest
presented. Take Figure 2 as an example, the bear statue is
to be removed from the scene of interest, and its segmenta-
tion masks M1:K from I1:K can be produced by models like
SAM [17] (see supplementary materials for details).

To address the above 3D Gaussian Inpainting with Depth-
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Figure 3. Inferring Depth-Guided Inpainting Mask. Taking
{I1,M1} at view ξ1 as an example reference view, the original
background region IB1 can be first produced. We then project
the background region IB2 from ξ2 to ξ1, updating I ′

B
1 and the

associated inpainting mask M ′
1. By repeating this process across

camera views, the final inpainting mask M ′
1 contains only the

regions that are not visible at any training camera views.

Guided Cross-View Consistency (3DGIC). Our 3DGIC com-
prises two learning stages: Depth-Guided Inpainting Mask
and Inpainting-guided 3DGS Refinement. The former re-
fines the object mask guided by both semantics and depth
maps observed across I1:K , while the latter performs inpaint-
ing with cross-view consistency for updating the Gaussians
G′

1:N ′ .

3.2. Inferring Depth-Guided Inpainting Masks
Given multi-view images I1:K of a scene with binary masks
M1:K depicting the object to be removed, we aim to infer a
proper mask M ′ for inpainting images at each view under
the guidance of depth images D1:K rendered from G1:N . As
a result, the masked image I ′B1:K only contains background
pixels that are visible at other camera views. The i-th masked
image I ′Bi is defined as:

I ′Bi = Ii · (1−Mi), (1)

where 1 denotes a tensor with the same size as M and all
the elements are one.

Take {I1,M1} in Figure 3 as an example, our process of
inferring Depth-Guided Inpainting Masks takes the original
image I1 from ξ1 and masks out the areas in M1 as the origi-
nal visible backgrounds IB1 = I1 ·(1−M1) from view ξ1. To
explore all the visible background pixels from other views
ξ2:K , we take I2:K with their masks M2:K and rendered
depth D2:K at ξ2:K , and we project the above background
pixels from each view to ξ1. Taking view ξ2 as an example,
the visible backgrounds IB2 in I2 (IB2 = I2 · (1−M2)) are

projected into the 3D space via D2 and ξ2 and then back-
projected to ξ1. Among all the back-projected pixels, we
consider the pixel coordinates that lie inside M1 as visible
backgrounds from I2, denoted as IB1,2. The operation for
obtain IB1,2 is calculated as:

IB1,2 = Proj2D(Proj3D(IB2 , D2, ξ2), ξ1) ·M1, (2)

where Proj3D(·, ·, ·) denotes the 3D projection function that
projects 2D colored pixels in IB2 into 3D point clouds with
its depth map D2 and camera pose ξ2, while Proj2D(·, ·)
represents the 2D projection function that projects the 3D
colored point cloud back to ξ1 as colored pixels. With the
above operation, the corresponding pixel coordinates of IB1,2
are directly excluded from M1, and thus the inpainting mask
is refined as M ′

1, and the masked image I ′
B
1 = IB1 + IB1,2

at ξ1 is further obtained. Similarly, we repeat this process
through all the views ξ2:K to infer the final Depth-Guided
Inpainting Mask M ′

1 and the masked image I ′
B
1 at ξ1. Also,

we produce the depth-guided inpainting masks M ′
1:K for all

the views ξ1:K . Please refer to our supplementary material
for more details about this inferring process.

It is worth noting that the above process is deterministic.
It not only reduces the uncertainty of image regions to inpaint
at each view, but it also makes the updating of the 3DGS
model for rendering the unpainted scene more effective, as
discussed in the following subsection.

3.3. Inpainting-guided 3DGS Refinement
The aim of this stage is to optimize G′

1:N ′ with masked
I ′1:K obtained at ξ1:K with cross-view consistency so that
rendering of the corresponding high-fidelity scene can be
produced, realizing the task of 3D inpainting. As shown
in Figure 2, the 3DGS for this inpainting scene can be first
updated by removing the Gaussians with the semantic labels
corresponding to the masked region (e.g., “bear” in the orig-
inal Gaussian G1:N ), and replaced by the same amount of
randomly initialized Gaussians in the masked region (e.g.,
with bear removed; see [44] and our supplementary materi-
als).

Take ξ1 as the reference view for an example, the rendered
image I ′1 and depth map D′

1 of G′
1:N ′ at ξ1 are inpainted by

a 2D inpainter [33, 36] (using M ′
1 as inpainting mask) as:

IIn1 = Inpaint2D(I ′1,M
′
1)

DIn
1 = Inpaint2D(D′

1,M
′
1),

(3)

where Inpaint2D(·, ·) denotes the 2D inpainting process,
and IIn1 and DIn

1 represents the 2D-inpainted results of I ′1
and D′

1, respectively. To ensure I ′1 looks identical to IIn1 ,
the rendering loss at ξ1 is defined as:

Lrendering = Lrgb + Ldepth. (4)
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Note that the image recovery loss Lrgb is calculated as:

Lrgb = ∥I ′1 − IIn1 ∥1 + LSSIM (I ′1, I
In
1 ), (5)

where the LSSIM denotes the structure similarity loss [15].
And, the depth loss Ldepth is defined as:

Ldepth = ∥D′
1 −DIn

1 ∥1. (6)

To further ensure the masked regions in I ′2:K (with respect
to M ′

2:K) are cross-view consistent with the 2D-inpainted
region in IIn1 , we project the inpainted region of IIn1 into
the 3D space as a set of colored point clouds P1, followed
by re-projecting back to ξ2:K as supervision. Thus, P1 is
calculated as:

P1 = Proj3D(IIn1 ·M ′
1, D

In
1 , ξ1)), (7)

where Proj3D(·, ·, ·) is the same projection function in
Eqn. 2. For each view ξk of ξ2:K , the back-projected image
IPk for supervision is denoted as:

IPk = I ′k · (1−M ′
k) + Proj2D(P1, ξk) ·M ′

k, (8)

where Proj2D(·, ·) is also the same 2D projection function
in Eqn. 2. To this end, the cross-view consistent loss Lcross

is defined as:

Lcross =
∑

k∈2...K

LLPIPS(I
′
k, I

P
k ), (9)

where LLPIPS denotes the LPIPS [48] loss that calculates
the perceptual similarity between I ′k and IPk .

Finally, the overall loss for 3D inpainting is calculated by
Linpaint = Lrender + Lcross. We note that by conducting
Linpaint, G′

1:N ′ is guaranteed to inpaint the object-removed
3D scene with cross-view consistency by taking {IIn1 , DIn

1 }
as guidance.

3.4. Training and Inference
3.4.1. Training
During the training (optimization) process, we calculate the
refined mask M ′ described in Sect. 3.2 for all K views
and choose the view with the largest refined mask as the
reference view. This is because the 2D inpainted result
from this view covers the most 3D space compared to other
views, allowing us to provide a more informative cross-view
optimization. By choosing the reference view, Linpaint is
applied to optimize G′

1:N ′ . To this end, G′
1:N ′ is properly

supervised to ensure the 3D scene is reasonably inpainted
and consistent across different views.

3.4.2. Inference
Once we finish the optimization of the inpainted scene with
our 3DGIC, the optimized Gaussians G′

1:N ′ are able to ren-
der a novel view synthesis of the scene by using arbitrary
camera poses.

4. Experiments

4.1. Datasets
To evaluate the effectiveness of our method, we conduct
experiments on the most used real-world benchmark dataset:
the SPIn-NeRF [25] dataset. This dataset contains ten real-
world scenes, including indoor and outdoor scenes. Each
scene is composed of 60 frames of training images and 40
frames of testing images where a certain object in the scene
is removed, with camera poses of all 100 images available.
The binary mask of the object to be removed is also provided
in each frame for evaluation. Following the setting of [7,
18, 25, 38, 44], we resize each image as 1008 × 567 in
resolution for all our experiments and show the comparisons
quantitatively and qualitatively.

Since the camera poses in all the scenes provided in the
SPIn-NeRF dataset only cover a small range (i.e., all the
image frames are captured near the front view of the scene),
we additionally include qualitative comparisons with several
scenes covering 360◦ of camera poses to show the effec-
tiveness of our design, specifically for our Depth-Guided In-
painting Mask. Following Gaussian Grouping [44], we take
the “bear” scene provided in InNeRF360 [37], the “counter”
scene in Mip-NeRF360 [2], and the “figureines” scene in
LeRF [16] for the additional qualitative evaluations. Since
these scenes are not originally for the 3D inpainting task,
we manually select an object in each scene as the object to
be removed and select the corresponding ID in the segmen-
tation map obtained from SAM [17] as the object mask in
each view. Please refer to our supplementary material for a
detailed description of these scenes.

4.2. Quantitative Evaluations
Table 1 shows the comparisons between our 3DGIC (with
LAMA [36] or LDM [33] as 2D inpainter) and several
state-of-the-art approaches such as SPIn-NeRF [25], MVIP-
NeRF [7], Gaussian Grouping [44], MALD-NeRF [18], and
GScream [38] using the SPIn-NeRF dataset. Following SPIn-
NeRF and MALD-NeRF, we conduct FID [13], masked FID
(m-FID), LPIPS [48], and masked LPIPS (m-LPIPS) as our
evaluation matrices, where m-FID and m-LPIPS calculate
the FID and LPIPS scores only inside the ground truth in-
painting masks. We note that the official implementation
of MALD-NeRF is currently unavailable; we directly use
the output results provided on their official project page for
evaluation. As for other state-of-the-arts, we reproduce re-
sults from their official implementations and the released
configurations.

From Table 1, we can see that the LDM version of our
3DGIC achieves the best score on all four evaluation matri-
ces. As for our 3DGIC using a non-diffusion-based model
of LAMA as the 2D inpainter, the results still outperform
MVIP-NeRF and MALD-NeRF, where both use LDM as the
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Table 1. Quantitative evaluation on the SPIn-NeRF dataset in terms of FID and LPIPS. Note that m-FID and m-LPIPS represent that
the FID and LPIPS scores are only calculated within the ground truth inpainting masks.

Representation 2D inpainter FID↓ m-FID↓ LPIPS↓ m-LPIPS↓
SPIn-NeRF [25] NeRF LAMA [36] 49.6 153.4 0.31 0.053
MVIP-NeRF [7] NeRF LDM [33] 50.5 173.4 0.31 0.050
Gaussian Grouping [44] Gaussian Splatting LAMA [36] 44.7 132.5 0.30 0.037
MALD-NeRF [18] NeRF LDM [33] 44.9 113.5 0.26 0.031
GScream [38] Gaussian Splatting LDM [33] 38.6 101.6 0.28 0.033
3DGIC (Ours) Gaussian Splatting LAMA [36] 41.7 102.4 0.28 0.032
3DGIC (Ours) Gaussian Splatting LDM [33] 36.4 96.3 0.26 0.028

Figure 4. Qualitative results on the SPIn-NeRF [25] dataset. Two different views of the same scene are shown for each inpainting
example. We compare rendering results against MVIP-NeRF [7], MALD-NeRF [18], and GScream [38]. We can see from the regions
highlighted by the red boxes that our 3DGIC performs better in terms of multi-view consistency and rendering fidelity

inpainter. The above results show that while using a better
2D inpainter achieves better results, the improvements in our
3DGIC do not come solely from a better 2D inpainter. This
suggests that our model is not bundled by 2D inpainters and
achieves 3D inpainting with improved fidelity.

4.3. Qualitative Results

In Figure 4, we qualitatively compare our 3DGIC with
MVIP-NeRF [7], MALD-NeRF [18], and Gscream [38]
using the testing set of SPIn-NeRF dataset. In this figure,
each of the two rows shows the results of the same scene
with different viewpoints, while the first column shows the
images containing the object to be removed along with the
object masks at the upper-left corner. Specifically, from the
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Figure 5. Qualitative results on the Figurines scene from the LeRF [16] dataset. We compare the rendering results with SPIn-NeRF [25],
Gaussian Grouping [44], and GScream [38]. The three rows show different views of the scene, whereas the first column shows the input
images with the object masks of the unwanted object. The regions highlighted by the red boxes show that our 3DGIC inpaints a smoother
table surface without artifacts.

Figure 6. Qualitative results on the Counter scene from the MipNeRF360 [2] dataset. We compare the rendering results with SPIn-
NeRF [25], Gaussian Grouping [44], and GScream [38]. The three rows show different views of the scene, where we zoom in a certain
region in the first row to highlight the difference between each method. We can see from the regions highlighted by the red boxes that our
3DGIC correctly inpaints the water bottle without manipulating any other objects on the table (e.g., the plastic cover).

first two rows, we observe that while GScream and MALD-
NeRF both show high-fidelity images, some of the visible
details from the input image (e.g., the electrical socket on
the table) are not preserved properly. For the third and fourth

rows, where we zoom in on certain areas inside the red boxes,
although it is reasonable for MALD-NeRF to generate a hat
in the inpainted region, the logo on the hat is not consistent
across different views. As for MVIP-NeRF, blurry images
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Figure 7. Ablation studies on the Bear scene from the InNeRF360 [37] dataset. We verify the effectiveness of our Inferring Depth-Guided
Inpainting Mask and Inpainting-guided 3DGS Refinement.

are generated in all cases. Oppositely, our 3DGIC gener-
ates high-fidelity images with multi-view consistency and
preservation of the visible backgrounds.

In Figure 5 and Figure 6, we further show the qualita-
tive comparisons with SPIn-NeRF, Gaussian Grouping, and
GScream using the Figurines dataset from LeRF [16] and the
Counter dataset from MipNeRF360 [2], where each shows
results from three different viewpoints. For Figure 5, we
can see that both SPIn-NeRF and Gaussian Grouping leave
obvious black holes and shadows in the inpainting region,
while GScream does not clearly remove the object of interest.
In contrast, our 3DGIC successfully removes the unwanted
object and produces smooth and multi-view consistent re-
sults without leaving heavy shadows. For Figure 6, where
certain areas are cropped by red boxes and zoomed in in
the first row, GSream does not fully remove the object of
interest either. SPIn-NeRF not only removes the object of
interest but also inpaints other objects in the background. As
for Gaussian Grouping, which uses GroundedSAM [32] to
detect inpainting mask with the text prompt “blurry hole”
as input, the GroundedSAM model locates other regions
rather than focusing on the object removed region, produc-
ing blurry and inconsistent inpainting results across different
views. In the contrary, our 3DGIC locates the regions to
be inpaint properly and hence produces high-fidelity results
while preserving all the other background objects.

4.4. Ablation Study

To further analyze the effectiveness of our designed mod-
ules (i.e., Inferring Depth-Guided Masks and Inpainting-
guided 3DGS Refinement), we conduct ablation studies on
the “bear” scene from InNeRF360 [37], as shown in Fig-
ure 7. Column (a) shows the input images with the bear
statue and their corresponding object mask. The baseline
model (b) uses the original object masks as the inpainting

masks and directly applies all the inpainted 2D images as
input to fine-tune a 3DGS model. The results of model (b)
show blurry contents all over the rendered image, while the
inpainted results are not consistent across different views.
For model (c), the original object masks are applied as the
2D inpainting model, with our Inpainting-guided 3DGS Re-
finement. Although the rendered images of model (c) show
better fidelity, using the original object masks as inpainting
masks results in modifications to the visible backgrounds.
For model (d), our inferred depth-guided masks M ′

1:K are
applied as the 2D inpainting masks, but all the 2D inpaint-
ing results are directly used as inputs to fine-tune the 3DGS
model. As a result, although the backgrounds are preserved,
the inpainted region is blurry and not consistent across the
views. As for our full model in the last column (e), the
depth-guided masks are used, and the 3D Inpainting with
Cross-View Consistency is applied, achieving the best re-
sults. This verifies the success of our proposed modules and
strategies for 3D inpainting.

5. Conclusions
In this paper, we propose the 3D Gaussian Inpainting with
Depth-Guided Cross-View Consistency (3DGIC) for inpaint-
ing real-world 3D scenes represented by 3D Gaussian Splat-
ting (3DGS) models. With the conduction of our Infer-
ring Depth-Guided Inpainting Masks, we are allowed to
obtain precise inpainting masks by considering rendered
depth maps and visible background information from other
views. With these depth-guided inpainting masks properly
obtained, our Inpainting-guided 3DGS Refinement optimizes
a newly initialized 3DGS model and performs 3D inpainting
simultaneously. In our experiments, we quantitatively and
qualitatively show that our 3DGIC is able to handle scenes
with various ranges of camera views and perform favorably
against existing 3D inpainting approaches.
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3D Gaussian Inpainting with Depth-Guided Cross-View Consistency

Supplementary Material

A. Additional Details of 3DGIC
A.1. Details of Backbone 3D Gaussian Splatting

Model
Given the multi-view images I1:K with corresponding cam-
era poses ξ1:K of a 3D scene, the vanilla 3DGS [15]
model parameterize each Gaussian Gi in G1:N with its
3-dimensional centroid pi ∈ R3, a 3-dimensional stan-
dard deviation si ∈ R3, a 4-dimensional rotational quater-
nion qi ∈ R4, an opacity αi ∈ [0, 1], and color coeffi-
cients ci for spherical harmonics in degree of 3. Hence,
Gi is represented with a set of the above parameters (i.e.,
Gi = {pi, si,qi, αi, ci}). However, to make sure the 3DGS
models in this paper are capable of removing Gaussians
corresponding to any indicated object (e.g., “bear” in Fig-
ure 2) as described in Sect. 3.3, we incorporate the use of
a semantic-aware 3DGS (i.e., Gaussian Grouping [44]) ap-
proach as the main backbone 3DGS model of our method.
Also, since the rendered depth maps D1:K are utilized as
important guidance in our 3DGIC, we additionally combine
the use of Relightable Gaussian [11], which produces better
depth estimations from 3DGS model as our final backbone
for Sect. 3. We now briefly discuss both methods.

Incorporating Semantic Segmentation via Gaussian
Grouping. To overcome the lack of fine-grained scene
understanding in 3DGS, Gaussian Grouping [44] extends
3DGS by incorporating segmentation capabilities. Along
with I1:K , Gaussian Grouping additionally takes the Seg-
ment Anything Model (SAM) to produce 2D semantic seg-
mentation masks S1:K = {S1, S2, ..., SK} from multiple
views as inputs, and an additional 16-dimensional param-
eter ei ∈ R16 is introduced to represent a 3D Identity En-
coding for each Gaussian Gi. Therefore, each Gaussian
Gi is extended as Gi = {pi, si,qi, αi, ci, ei}. To make
sure G1:K learns to segment each object represented by
S1:K in the scene, a 2D identity loss Lid is applied by
calculating cross-entropy between Ŝ1:K and S1:K , where
Ŝ1:K = {Ŝ1, Ŝ2, ..., SK} denotes the rendered segmenta-
tion maps from G1:K . Additionally, to further ensure that
the Gaussians having the same identities are grouped to-
gether, a 3D regularization loss L3D is applied to enforce
each Gi’s k-nearest 3D spatial neighbors to be close in their
feature distance of Identity Encodings. Please refer to the
original paper [44] for detailed formulations of segmentation
map rendering and L3D. The design of Gaussian Grouping
ensures that the segmentation results are coherent across
multiple views, enabling the automatic generation of binary
masks for any queried object in the scene.

Produce Reliable Depth Estimations with Relightable
Gaussians. Different from Gaussian Grouping, Re-
lightable Gaussians [11] extends the capabilities of Gaussian
Splatting by incorporating Disney-BRDF [4] decomposition
and ray tracing to achieve realistic point cloud relighting.
Unlike traditional Gaussian Splatting, which primarily fo-
cuses on appearance and geometry modeling, Relightable
Gaussians also aim to model the physical interaction of light
with different surfaces in the scene. Specifically, for each
Gaussian Gi, the original color coefficients ci is decom-
posed into a 3-dimensional base color bi ∈ [0, 1]3, a 1-
dimensional roughness r ∈ [0, 1], and incident light coef-
ficients li for spherical harmonics in degree of 3. Subse-
quently, the Physical-Based Rendering (PBR) process and
a point-based ray tracing are applied to obtain the colored
PBR 2D images ÎPBR

1:K and additionally supervised by I1:K .
Besides the above extensions on PBR for relighting, Re-
lightable Gaussians also introduces a 3-dimensional normal
ni for Gi and leverages several techniques, including an
unsupervised estimation of a depth map Di from each input
view ξi, to enhance the geometry accuracy and smoothness.
By conducting this self-supervised estimation and regular-
ization of normal maps and depth maps, the predicted depth
map Di is more reliable than the vanilla 3DGS. Please re-
fer to the original paper of Relightable Gaussians [11] for
detailed explanations.

In conclusion, each Gaussian of our 3DGIC is parame-
terized as Gi = {pi, si,qi, αi, ci, ei,bi, r, li,ni}. By com-
bining these methods, we are able to perform reliable depth
estimations and effective removal of the Gaussians corre-
sponding to any object in the scene for our 3DGIC.

A.2. Additional Details of Inferring Depth-Guided
Inpainting Masks

In Sect. 2.2 in our main paper, we introduce infer proper in-
painting masks M ′

1:K to determine the region to be inpaint by
realizing visible background regions across different views.
In our implementation, after updating the inpainting masks
M ′

1:K with the process described in Sect. 3.2, we further
conduct a refinement for each mask as a post-processing to
prevent noisy mask. Taking M ′

1 as an example, this process
updates M ′

1 as:

M ′
1 ← Open(M ′

1), (10)

where Open(·) represents a morphological opening process
to reduce noises. This refinement process ensures that small
noisy pixels are suppressed in our Depth-Guided Inpainting
Masks.
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Figure A8. Qualitative results on the Kitchen scene from the MipNeRF360 [2] dataset. We compare the rendering results with
SPIn-NeRF [25], Gaussian Grouping [44], and GScream [38]. The three rows show different views of the scene. We can see that our 3DGIC
inpaint a smooth kitchen table, while other approaches produce blurry results.

A.3. Additional Details of Initializing Inpainted
Gaussian

In Sect. 3.3, we introduce to remove the Gaussians with
semantic labels corresponding to the “bear” object in G1:N

and replace by the same amount of randomly initialized
Gaussians in the masked region as the initialization of G′

1:N ′ .
We now detail this initialization process for G′

1:N ′ .
When first removing the Gaussians corresponding to the

“bear” object, we directly use the remaining Gaussian to
render the image I ′1 and depth map D′

1. Following the 2D
inpainting process described in Sect. 3.3, the inpainted image
IIn1 and depth map DIn

1 are produced and projected into
3D space as colored point clouds P1. We then use the 3D
coordinates of P1 as the initialized 3D position for the newly
introduced Gaussians for G′

1:N ′ , since P1 represents the ideal
surface of the inpainted 3D Gaussian provided by IIn1 after
removing the bear. Note that if the number of points in P1

does not match the number of newly initialized Gaussians in
G′

1:N ′ (also the number of removed Gaussians in G1:N ), we
apply random selection to the coordinates of P1 to match the
number of the newly introduced Gaussians. As for the other
parameters of the newly introduced Gaussians in G′

1:N ′ , we
follow Gaussian Grouping [44] to average the parameters
of each Gaussian’s 5-nearest neighbors (in 3D space) from
the remaining Gaussians as initialization. By this process,
G′

1:N ′ is properly initialized.

A.4. Implementation Details
In all our experiments, we train one model for each object
category, using a single NVIDIA RTX 3090 GPU (24G) for

training with the PyTorch [28] libraries. For each scene,
5000 iterations of optimization are applied to obtain the
inpainted 3DGS model. We also use the official implemen-
tation of [7, 25, 38, 44] for comparison. When applying 2D
inpainting models to the image and depth map to be inpaint,
if we use non-diffusion-based LAMA [36] as inpainter, the
RGB image and depth map are inpainted separately. How-
ever, if LDM [33] is applied as our 2D inpainters, we follow
the suggestion in NeRFiller [39] to stack the RGB image
and the depth map in the same image for inpainting to ensure
the inpainted RGB image and the depth map are consistent
in terms of the geometry details. Specifically, we crop a
512 × 512 patch for the RGB image and the depth map to
be inpainted center at the pixel coordinate of the inpaint-
ing mask’s center, and paste the cropped RGB patch to a
1024× 1024-resolution black image at the upper right cor-
ner with the cropped depth map at the lower left corner as
the input image for the LDM. Similarly, we also crop a
512× 512 patch for the inpaint masks and put them to the
upper right and lower left corner of another 1024 × 1024-
resolution black image as the input binary inpainting mask
for the LDM. We then use the prompt “an RGB image and a
depth image of the same scene” to inpaint the input image.
Finally, the inpainted RGB patch and the depth map patch
are pasted back to the original image and depth map, respec-
tively, as the 2D inpainting result. It is worth noting that we
apply the 2D inpainting process for every 500 iterations. Fol-
lowing MALD-NeRF [18], we use the technique of partial
DDIM [34], to start from latter step of the denoising process
as optimization iteration grows. Specifically, for a 50-step
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DDIM process, we start from step 0 of the LDM denoising
process for step 0 of our optimization. After 500 iteration
steps, the second time of the LDM inpainting starts from step
5 of the DDIM process and so on. When our optimization
reaches the last 500 iterations, the 2D inpainting process only
denoises using the last five steps of DDIM. This prevents
inpainting results that are too different from the current scene
and provides more stability for our optimization process.

A.5. Dataset Details
For the “figurines” scene from LeRF [16] dataset, we have
260 training frames and 40 testing frames, each with a
resolution of 986 × 728. For the “bear” dataset from In-
NeRF360 [37], we have 90 training frames and 6 testing
frames, each with a resolution of 985×729. As for “counter”
and “kitchen” scenes from MipNeRF360 [2], 240 (230 for
training and 10 for testing) and 279 (270 for training and 9
for testing) frames are available in total, respectively. Both
scenes are in the resolution of 779.

B. Additional Experiments
We additionally show the results on the “kitchen” scene from
the MipNeRF360 [2] dataset in Figure A8. We can see
that SPIn-NeRF produces blurry result, while GScream fail
to handle camera views with a wide range and not able to
remove the excavator clearly. Although Gaussian Grouping
also produces plausible results at the excavator-removed
regions, it incorrectly detects the glove behind the excavator
as region to be inpaint by using the “black blurry hole” as
the prompt for Gounded-SAM [32] to find inpainting masks
and therefore changes the background that should not be
changed (shown in the third view). On the other hand, our
3DGIC locates the proper region to inpaint and produces
smooth and high fidelity results.

C. Limitations
We now discuss the potential limitations of our 3DGIC.
Since our 3DGIC uses the rendered depth map as guidance
for the 3D inpainting process, the reliability of the rendered
depth map becomes an important issue. As detailed
in Sect. A.1, we combine the optimization technique
introduced in Relightable Gaussians [11] to conduct a
self-supervised loss for the predicted normal map and the
rendered depth map to enhance the accuracy of the rendered
depth map. However, if the input views are too sparse,
the rendered depth map would not be guaranteed to be
accurate, which hinders the inferring of Depth-Guided Mask
and the achievement of cross-view consistency. Another
potential limitation of our 3DGIC lies in the capability of
the SAM [17] model. As detailed in Sect. A.1, we use SAM
to produce 2D segmentation masks and use these masks as
supervision for our backbone 3DGS model so that we don’t
have to manually annotate the 2D object mask of the object
to be removed like SPIn-NeRF [25]. However, if the object

to be removed is too small, the SAM model would confuse it
with other objects and not produce the correct segmentation
mask for the object. To overcome the above limitations,
studies on the production of reliable depth maps for 3DGS
models with only sparse input views and producing a more
accurate segmentation mask for any object would be possible
directions to improve the quality of 3D Gaussian inpainting.
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